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Helicity generation and vorticity dynamics in a helically symmetric flow are studied 
numerically by solving the Navier-Stokes equations in an unbounded domain. The 
helical symmetry reduces the problem to one in two dimensions, which makes it 
practicable to use an analytical expression for vortex surfaces. Furthermore, the field 
still retains three-dimensional aspects, such as helicity and vortex stretching. To every 
vortex surface there corresponds an inviscid invariant of helicity. 

Our initial conditions are chosen as two cases of twisted elliptical tubes of high 
vorticity. The first case has elliptical vortex surfaces, which is a helically symmetric 
version of the initial condition employed by Aref & Zawadzki (1991), but the second 
case has axisymmetric vortex surfaces. The total helicity inside every vortex surface 
is zero in both the initial fields. It is found that vortex stretching plays an important 
role in the time evolution of the first case, but not of the second case. 

We examine the relation of the vorticity dynamics to the helicity generation by 
using the representation of the vortex lines and the vortex surfaces rather than the 
equi-vorticity surfaces. This leads to new concepts for the mechanisms of formation 
of the spiral vortex structures observed for the two cases. The detailed investigation 
of the helicity generation is done by examining the distribution of the helicity on 
each vortex surface and the Fourier spectrum of helicity. The processes of helicity 
generation due to the vortex stretching are different for each initial condition. The 
viscosity dependence of ‘inviscid’ invariants shows that with smaller viscosity, only in 
the first case is more helicity generated. This is because in the first case where there 
is vortex stretching the contact zones of the adjacent vortex layers are elongated and 
the local vorticity is intensified to an extent limited by viscosity. Thus with smaller 
viscosity a more intense vortex is reconnected to generate more helicity. As expected, 
in both cases more of the energy is preserved with smaller viscosity. 

1. Introduction 
Both helicity and vortex stretching are inherent properties of three-dimensional 

flows, and play fundamental roles in turbulence theory. In order to know which is the 
best cascade theory, it is important to examine which of the two inviscid conserved 
quantities, the kinetic energy or the helicity, is more dissipated in a slightly viscous 
case. The competition between vortex stretching and viscous dissipation is crucial in 
the singularity problem of a solution to the three-dimensional Navier-Stokes equation. 

t Present address: Division of Physics and Astronomy, Graduate School of Science, Kyoto 
University, Kyoto 606-01, Japan. 
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A helically symmetric flow is one of the simplest flows possessing these character- 
istics, although it depends only on two space variables. Such a flow in a circular 
pipe has already been investigated extensively both theoretically and numerically by 
many researchers (Kelvin 1880; Landman 1990a,b; Dritschel 1991 and references 
therein). In the present paper, we numerically simulate a helically symmetric flow 
in an unbounded domain, which may remove inessential complexity due to the in- 
teraction with the boundary when we consider the generation mechanism of helicity. 
No singularity is expected in either two-dimensional or cylindrically symmetric flows 
because there is no vortex stretching. Another of the simplest systems with vortex 
stretching is a rotationally symmetric flow, that is an axisymmetric flow with swirl. 
Using the rotationally symmetric flow, the generation of finite time singularities in 
an Euler flow was investigated numerically (Grauer & Sideris 1991; Pumir & Siggia 
1992). We know the mathematical result that in a circular pipe no singularity will 
appear in the Navier-Stokes flow with helical symmetry (Mahalov, Titi & Leibovich 
1990). The singularity problem of the Euler equation with the present symmetry will 
be reported elsewhere. 

The preservation property of kinetic energy and helicity, both of which are quadratic 
in the velocity, in an inviscid fluid may restrict the dynamics of a large-length-scale 
and/or high-Reynolds-number flow. Note that in contrast with the kinetic energy, 
not only the total helicity but also every patch of helicity surrounded by any vortex 
surface? are inviscid conserved quantities. The helicity for each vortex surface is, 
of course, Galilean invariant, which is in contrast to the non-Galilean invariance of 
helicity density. And helicity is clearly related to the topology of vortex filaments, 
knottedness and circulation (Moffatt 1969; Moffatt & Ricca 1992; Moffatt & Tsinober 
1992; Tur & Yanovsky 1993). Also, helicity has been referred in the discussion of 
vorticity reconnection (Kida & Takaoka 1987, 1988). It is desirable to use vortex 
surfaces in the study of phenomena related to helicity, though equi-vorticity surfaces, 
high-vorticity regions, have been used in most numerical simulations of vorticity 
dynamics. Differences between vortex surfaces and equi-vorticity surfaces are enlarged 
by the effect of vortex stretching (Kida & Takaoka 1991, Takaoka 1991). Although 
constructing the vortex surface is difficult in a general three-dimensional flow, the 
present symmetry makes it practicable as an explicit form (see 0 2). 

The helicity may increase or decrease depending on the sense of its skewed structure, 
which is a contrast to the monotonic decrease of kinetic energy. It is known that some 
non-Galilean-invariant forcing to small-length-scale motions can generate a large- 
length-scale structure with non-zero helicity in a turbulent flow (Krause & Rudiger 
1974; Frisch, She & Sulem 1987). This is called the AKA-effect, and is formally 
similar to the a-effect for a magnetic field. This breaking of the Galilean invariance 
is closely related to the lack of reflectional symmetry (see for example Moffatt & 
Tsinober 1992). A velocity field with non-zero helicity lacks reflectional symmetry. 
But the lack of reflectional symmetry does not necessarily mean that the field will 
have non-zero helicity. In a numerical simulation of a collision of two unlinked 
elliptical rings of high vorticity, which are set to be without reflectional symmetry or 
helicity, Aref & Zawadzki (1991) demonstrated the generation of linkage of vortex 
tubes and therefore of helicity. The helicity, or the linkage and the knottedness of 

t We use this word for the surface of a vortex tube. In the present paper, a ‘vortex tube’ is used 
for a bundle of vortex lines, whose tangent at any point is in the direction of the vorticity field, 
though the word ‘vortex’ has sometimes been used for the localized high-vorticity region. 
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vortex lines, is generated through vorticity reconnection, but the reverse is not always 
the case (Kida & Takaoka 1987, 1988, 1994; Kida, Takaoka & Hussain 1991). 

In the present paper, our main purpose is a detailed investigation of such helicity 
generation by using a helically symmetric flow. Reducing the dimensions by one, we 
are able to simulate a flow with a much larger Reynolds number, which enables us 
to investigate the Reynolds number dependence and to conjecture the behaviour in 
an inviscid limit. 

This paper is organized as follows. In $2 ,  we introduce some notation and derive 
basic equations which govern a helically symmetric flow in an unbounded domain. 
The field is determined by two scalar functions (y, and x) of two space variables ( r  
and 4). In 53, our numerical method is briefly explained. Initial conditions reported 
here have zero total helicity with large vortex structure, in order to focus our attention 
on the generation of helicity and its relation with vorticity dynamics. One of our 
initial fields can be considered as the continuous version of the flow investigated by 
Aref & Zawadzki (1991). Numerical results for this initial condition are collected 
in 6 4. Another initial condition, having the same equi-vorticity surface but a different 
vortex structure, is also examined and compared briefly in 4 5. And the last section is 
devoted to concluding remarks. 

2. Formulation for a helically symmetric flow 

cylindrical polar coordinates (Y, 8, z )  as 
We say that a vector field u has helical symmetry when it can be expressed in 

u = 4 y ,  4, t) > (2.1) 
where 4 = 8 + EZ, and E is a parameter representing the pitch in the z-direction as 
(27c/~) (Landman 1990~). It should be noted that this does not mean that the vortex 
lines and the stream lines have helical structure with the same pitch. It is convenient 
to introduce a Beltrami vector to represent this flow (Dritschel 1991): 

(2.2) h = h (e ,  - €reg) , 2 

and 

Note that the Beltrami vector is not a unit vector. Furthermore it has following 
properties : 

(2.4) 
where f is an arbitrary function. The last equation is another expression of the helical 
symmetry. 

Let us introduce two scalar functions y,(r ,  4, t )  and x ( r ,  4, t). The velocity u of the 
incompressible fluid and its curl, vorticity w, may be written as 

(2.5) 

V - h = 0, V x h = -26h2h, h Vf (Y, 4, t )  = 0, 

u = -h x Vy - hX, w = h x VX + h ( 2 c h 2 ~  +a), 

where 

It is worth noting that from (2.5) one knows V x - w  = 0 and Vy,.lc = 0, which means 
that the level surfaces of an arbitrary function of x and y, are vortex surfaces and 
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stream sheets, respectively. When x = 0 (or y = 0), cylindrical surfaces (r =const.) 
are the vortex surfaces (or stream sheets). 

2.1. Governing equations 
We next derive governing equations for y and x, which describe a flow having 
the present symmetry. The basic equations of an incompressible fluid motion are 
composed of the Navier-Stokes equation and the continuity equation. The latter 
equation is already satisfied by virtue of (2.5). Putting these expressions into the 
vorticity equation, the curl of the Navier-Stokes equation, we obtain a set of equations 
to determine the time-evolution of y and x : 

+ 2veA*(h2x) + vA*a, (2.7) 

ID = -A*y, (2.8) 
where use has been made of equations (2.4). 

In the case of E = 0, equation (2.7) is reduced to the two-dimensional vorticity 
equation expressed in terms of the stream function y(r,e,t), and equation (2.6) 
becomes the governing equation for the passive scalar field ~ ( r , O , t )  advected by the 
same velocity with the same diffusivity in the two-dimensional flow. In the limit 
e + co, on the other hand, in the rescaled variables 2 = X / E  and @ = y / e ,  they are 
reduced to the equation of motion for an axisymmetric flow expressed in terms of the 
Stokes' stream function @(r ,  z, t). 

For convenience in the later discussion, we define here several integrated physical 
quantities, such as energy E ,  enstrophy Q, helicity H ,  and rate of helicity change 
dH/dt, in terms of y and x as follows: 

E = I / J {yw + x 2 }  h2rdrd+, 2 

Q = // { ( V X ) ~  + (a + 2eh2~)2} h2rdrd+, 

H = -2 11 {a  + eh2X} Xh2rdrd+, 

(2.10) 

(2.11) 

(2.12) 
dH 
- = 4v // [ { eh2(a + 2eh2x) - A*x} (a + 2eh2x)] h2rdrd+. dt 

In a two-dimensional flow, when the total circulation of the component of vorticity 
perpendicular to the plane is not zero, the total energy Eo = J lu12rdrd+ is infinite 
because of the logarithmic dependence on r of the primitive function, even if the 
vorticity decreases in space sufficiently fast. To avoid this problem of infinity, use has 
been made of partial integration in the above definition of energy. The time variation 
of E and Eo is the same, the difference is just the infinitely large constant. 
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3. Numerical method and initial conditions 
3.1. Numerical method 

In order to solve equations (2.6) and (2.7) numerically, the Fourier expansion in the 
&direction is employed on y and x as 

n=-N4/3 n=-No/3 

where y-,, = y i ,  xPn = xf and * denotes the complex conjugate. A pseudo-spectral 
method with an N6-mode fast Fourier transformation is used in the evaluation of 
the &direction and the aliasing errors appearing in the evaluation of the nonlinear 
terms are removed by the 2/3-law. We further introduce a new independent variable < to map a semi-infinite region 0 < r < cg onto a finite region 0 < < < 1/2, where 
< is defined as r = &tan(nc). & is an adjustable parameter and we set & = 3 
in the present simulation. In the radial 5 (r)-direction, a second-order central finite 
difference scheme is used. We divide the space in the <-direction into N ,  equal-size 
meshes so that the size of a radial grid in r-space is n&/2Nr (1 + r 2 / @ ) .  It is 
expected in our simulation that for large r both x and a = -A*y decay exponentially 
fast and the characteristic scales also increase. 

The function y is obtained by solving the Poisson equation (2.8) which is now 
separated for each Fourier mode as 

For n 2 1, the Laplace operator on the left-hand-side of (3.2) is expressed by a band 
matrix in terms of the finite difference scheme and solved inversely to obtain y n  by 
the Gauss elimination method. When n = 0, this Poisson equation is 

(3.3) 

If Tz = J worh'dr # 0, yo may diverge as r + GO, irrespective of how fast a. itself 
decays. Fortunately, however, we do not have to use yo itself in our simulation since 
we can rewrite the basic equations in terms of h2dyo/dr, which may decay to zero 
even if T z  is finite. Formally we perform the integration 

in <-space (see also Buntine & Pullin 1989). 
In the time integration we use a modified Runge-Kutta-Gill scheme, and some 

of the viscous terms, which are linear and do not depend on the space variables 
explicitly, are analytically integrated and included in the modified scheme to stabilize 
it (see also Landman 1990a). In the following simulation, different numbers of grids 
and modes (N,.,N') are used depending on the Reynolds number (see table 1). Two 
simulations, run-3d and run-5d, have been done to check the numerical accuracy. 

3.2. Initial conditions 
Two types of initial conditions are adopted to examine helicity generation. Our initial 
condition for the first case, Case I, is the following one, which is a helically symmetric 
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Run N ,  x N4 v Final time 
run-1 128 x 64 0.005 20 
run-2 128 x 64 0.002 30 
run-3 128 x 64 0.001 40 
run-3d 256 x 128 0.001 40 
run-4 256 x 128 0.0005 50 
run-5 256 x 128 0.0002 50 
run-5d 512 x 256 0.0002 50 
run-6 512x256 0.0001 50 

TABLE 1. Parameters used in the simulations of Case I. 

version of the initial condition employed by Aref & Zawadzki (1991): 

{ (cos24 I sin2$)’} 
b2 

x =exp -r2P - 
a2 9 (3.5) 

13.6) 
2 a x  { ( c0s24 sin24)p - h2} x, 

b2 
a = -2eh x -er-  = 2e pr2’ - 

ar a2 
where e, p, a and b are free parameters. The functional form of (3.5) is chosen so 
as to have an elliptical ring structure with an equi-vorticity surface on a z-constant 
cross-section. The condition (3.6) is determined for the vorticity field to be two- 
dimensional, i.e. w, = 0 everywhere. Every vortex line is then initially unlinked, which 
means the total helicity is zero. After some algebra, we find that the rate of helicity 
change is also zero at the initial instance. 

The other initial condition, Case 11, is 

x = 0, (3.7) 

2 1/2 

x { ( ‘OS2’ a2 + * ) 2  b2 + sin2&,cos24 (-!$ - i) } , (3.8) 

whose equi-vorticity surfaces are the same as those in Case I. Equation (3.7) makes 
the helicity density u o zero everywhere as well as the total helicity. The rate of 
helicity change, on the other hand, is not zero from the start. As we will see in later 
discussion, the role of vortex stretching is an essential difference between the two 
cases. 

We will report, in the following, the results for the case of E = 1, p = 2, a = 3 
and b = 1. Note here that (2.6) and (2.7) are invariant under the transformations 
(y ,  4,e) + (-y, -4, -6) or (x,y,  4)  + (-x, -y, -4). Then, if €1 = - 6 2 ,  the dynamics 
for E = €1 and e = € 2  are identical except for the signs of pseudo-scalars such as 
helicity. A perspective view of the equi-vorticity surface of the present initial field is 
shown in figure 1. An elliptical tube of high vorticity, which is composed of elliptical 
rings in the (x,y)-plane, is twisted uniformly in the z-direction. This presentation is 
good for surveying a three-dimensional structure, but it loses rich information, such 
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FIGURE 1. Perspective view of the equi-vorticity surface of the initial condition. Cases I and I1 have 
the same equi-vorticity surfaces, but different vortex structure, vortex surfaces and lines. It is seen 
from the (2,3,1)-direction, and the surface level is 50% of its maximum w,,, = 2.7. 

as the structure of vortex lines, the relation between different levels of vortex surfaces, 
and so on. In the following figures, we therefore use the three-dimensional view of 
vortex lines or the two-dimensional view of a cross-section on the (x,y)-plane. I 
hope readers can reconstruct three-dimensional images from these figures using their 
imagination. 

4. Numerical results for Case I 
4.1. Vorticity dynamics 

Figure 2(a) shows the vortex lines at the initial instant, each of which is started 
on a regular grid point in the !x,y)-plane. Although we simulate the field in an 
unbounded domain of (x, y, z)-space, we show only a box near the origin (x = y = 0) 
for convenience of display. To clarify the three-dimensional structure of the field, we 
show four perspective views seen from the z-,  y - ,  x- and (2,3,1)-directions. From the 
direction and the length of each vortex line drawn there, we know the direction and 
intensity of vorticity field. 

The time-evolution of the vorticity field is shown in figure 2(b-d). Initially the 
elliptical structure is deformed into an S-shape, or a combination of two facing 
arcs shifted by half a unit, by the induction velocity. During the deformation, the z- 
component of vorticity appears and vortex lines become three-dimensional (figure 2b). 
Readers may recognize that, as a whole, the vortex lines elongated toward the origin 
(x,y) = (O,O), which are the concave sides of the arcs, have a positive z-component 
of vorticity, and the vortex lines elongated outward, which are the convex sides of 
the arcs, have a negative z-component of vorticity. This result is easily understood 
by considering the velocity field discussed later (see the last paragraph in the present 
subsection). The S-shape of vortex lines is stretched and deformed into a spiral 
structure made of thin vortex layers (figure 2c). The growth of enstrophy at this stage 
(see figure 9) suggests intense vortex stretching. Finally, an axisymmetric structure 
emerges from the centre, and its radius becomes larger with time through viscous 



132 

Y O  O Y  

l " ' l " ' i "  

1 (ii) - 

z 0 -  

-1 : 
I I ,  , I I I I  I , ,  

- 

2 

O Y  

-2 

1 0 -1 
Z 

2 

Y O  

-2 

-2 0 2 
X 

1 

z o  

-1 

FIGURE 2 (u, b) .  For caption see facing page. 



Y 

-r 

- 

I 

Helically symmetric $ow 

(c) 

- 2  

- 0  

-2 

1 0 -1 

Y 

Y 
A 4 

1 

Z O  

-1 

X 

Y 

-2 0 2 
x 

1 0 -1 
Z 

1 

2 0  

-1 

133 

FIGURE 2. Time evolution of the vortex lines for Case I (run-5d) started from regular grid points 
on the (x,y)-plane, now z = 0. The grid size is 0.25 in each direction. They view is from the (i) z-, 
(ii) y-, (iii) x- and (iv) (2,3, I)-directions. (a) t = 0, (b) t = 3, (c )  t = 15, ( d )  t = 50. 
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diffusion (figure 2 4 .  It should be noted that the z-component of vorticity near the 
origin is changed from positive (figure 2b) to negative (figure 2 4 ,  which corresponds 
to the change of the sign of the total helicity discussed later. 

Breaking of the mirror symmetry, which the initial field has in the (r,4)-plane, is 
caused by the nonlinear effect, as seen from equations (2.6) and (2.7) by changing 
4 + -$. This symmetry breaking is observed as the generation of spiral structure and 
therefore of helicity. In the presentation of equi-vorticity surfaces, one is reminded 
of a similar process, a symmetric vortex merging, of two like-signed vortex patches 
in a usual two-dimensional flow (Melander, Zabusky & McWilliams 1988; Buntine 
& Pullin 1989). However, the dynamics involved is quite different, that is vortex 
stretching, directional change of vorticity, and generation of helicity. It should be 
noted that in our case the vorticity field is not a scalar field but a vector field, and 
the total circulation of w, is zero for all the time. 

We will give a simple explanation for the generation mechanism of the spiral 
structure by using the Fourier expression (3.1). Let all the Fourier components for 
odd wavenumbers be zero, which is the case here, and the zeroth modes (a0 and xo) 
and the second ones (w2 and x 2 )  be of the same order. If the typical length scale of the 
field y in the r-direction is R , then, roughly speaking, the Laplace operator magnifies 

of the zeroth and the second modes of y is smaller than those of w and x ,  i.e. w2/wo 
and x2/x0. That is, y(r ,4,t)  is more axisymmetric than w(r,4,t) and x(r,4,t). This 
argument is supported numerically; see figure 3, where the contour plots of y,  w, and 
x are drawn. Now recall that the level surfaces of y and x give stream sheets and 
vortex surfaces, respectively, as mentioned in 92. The velocity field has a more circular 
structure than the vorticity field. However, one must not hastily conclude that this 
circular velocity makes the field spiral. Note that the azimuthal velocity is written 
as ug = h2(-dy/8r + crx), and the circulation of this velocity is zero: ugrdd = 0 
for all r ,  which is different from the well-known situation of the vortex merging in a 
pure two-dimensional simulation. Comparing the ‘form’ of the Jacobian term in the 
basic equations (2.6) and (2.7) with that in the usual two-dimensional Navier-Stokes 
equation, one might think of a ‘virtual stream function’ y. And the circulation of 
virtual azimuthal velocity (ug = d y / 8 r )  is non-zero: J: ugrdd # 0, which is negative 
and is consistent with the direction of the spiral structure. 

Another representation for this is as follows. Considering the three-dimensionality, 
one can understand that a rotating flow is not indispensable. The key to understanding 
is the velocity in the z-direction, u,, which makes the difference between ug and ug. 

Let us imagine the elliptical vortex rings with different height z ,  as in the schematic 
illustration in figure 4. Since u, is a function of r ,  the vorticity fields with different 
height are advected to the same height at a later time. Since, on the whole, downward 
velocity is larger for smaller radius, the thick portion of the vortex lines in figure 4, 
for example, will be in a common plane after some time. Thus one will see the spiral 
structure in the (x, y)-plane. This downward velocity and its distribution also makes 
the vortex lines three-dimensional as pointed out previously. 

the nth mode by (1  + n2)/R, 1 + n2c2. Then the ratio y2/y0 of the typical magnitude 

4.2. Helicity generation 
We next look at the dynamics of the field in terms of the distribution of helicity. 
Helicity surrounded by vortex surfaces, not equi-vorticity surfaces, is an inviscid 
invariant of motion. Vortex surfaces are given explicitly by the level surfaces of an 
arbitrary function of x(r,$) for a flow having the present symmetry. In figure 5,  we 
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FIGURE 3. Contour plots of the fields of (a) v, ( b )  m, and ( c )  x at t = 0 for Case I on the (x,y)-plane. 
Contour lines are drawn every 20% of the maximum (or minimum) value of each field. In (b), 
dashed lines represent negative values and the shaded region shows the field having smaller value 
than -20%. 

FIGURE 4. Schematic illustrations of the generation mechanism of the spiral structure: (a) perspective 
view, (b) projected lines on the (x, y)-plane. The thick portion of the vortex lines will be in a common 
plane after some time. 

show the time evolution of the level surfaces of x. For the initial field, one knows from 
(3.5) that x monotonically decreases from 1 to 0 as r increases. Since x itself is varied, 
diffused, by the viscous effect, we are not able to track each vortex surface exactly 
in time. The dynamics of vortex surfaces is almost the same as that of the vortex 
lines depicted in the preceding subsection. Elliptical vortex surfaces are changed to 
S-shape, spiral and axi-symmetric structures in order. 

Although the distribution of helicity density has been examined numerically by 
many researchers, the value of helicity density is not Galilean invariant. However, 
little is known about the distribution of helicity within each vortex surface, which 
is Galilean invariant, because of the difficulty in constructing the vortex surface for 
general three-dimensional flows. We numerically calculate the density of helicity and 
that of the rate of helicity change in the area of [x, x + 8x1 by integrating the helicity 
density u * w and the density of the rate of helicity change w * (V x w )  multiplied 
respectively by an area element rdrd4 and divided by the area. The distribution of 
the density of helicity on each vorticity surface and that of the rate of helicity change 
are plotted in figures 6(a) and 6(b), respectively. In the early period ( t  < 10) no 
localizing is observed, but broad and small distributions of negative helicity and of 
rate of helicity change are seen (see the lower two lines in figure 6). In the later period 
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FIGURE 5. Time evolution of the vortex surfaces (the level surfaces of x )  for Case I (run-5d). Contour 
lines are drawn 10, 30, 50, 70, 90% of the instantaneous maximum. The region with level above 
90% is shaded. ( a )  t = 0, (b)  t = 10, ( c )  t = 20, ( d )  t = 50. 

( t  >, 10) positive helicity is generated from the centre and spreads out, corresponding 
to the growth of an axisymmetric structure of vorticity (see the upper five lines in 
figure 6). 

Comparing figures 5 and 6(a, bj, we see the relation between vortex surfaces and the 
distribution of helicity (that of the rate of helicity change). For example, in figure 5(c) 
at t = 20, we shade the region whose level is above 90% of its instantaneous 
maximum. The corresponding line in figure 6(a) takes a peak value around there, 
shown by the arrow?. Helicity is mostly generated on the surface of the spiral layers, 
where the small length scale and viscous effects dominate. In other words, vorticity 
reconnection occurs actively there, which is confirmed by drawing the v(Aw)L-field 
(but those figures are omitted here) (see Kida & Takaoka 1991). Once the localized 
helicity is generated near the origin, its change is almost negligible. In figure 5 ( d )  
at t = 50, a grid pattern is also drawn in the region within the 50%-contour line, 

t The step near the peak in figure 6(a) is more clearly seen when we remove the contribution 
from the 'two islands', at (-2.3, -2.4) and (2.3,2.4) in figure 5(d), outside the spiral. 
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FIGURE 6. Time evolution of (a) the distribution of helicity and (b )  helicity change for each vortex 
surface of run-5d, both of which are divided by the area to represent a density. The lines from 
bottom to top correspond to t = 0, 5,  10, 15, 20, 35, 50, respectively, and shifted upward to avoid 
overlapping. 

where the rate of helicity change is almost negligible as shown by the double arrow 
in figure 6(b). So the field relaxes to the state where both nonlinear effects and 
helicity change will be negligibly small, which reminds us of the helical Beltrami 
state. 

Lastly, it may be useful to show the difference between the distribution of helicity 
on each vortex surface and that of helicity density. The latter quantity has been 
used to investigate helicity dynamics in almost all numerical simulations, though the 
former one is superior from a theoretical view point. In figure 7, the distribution of 
helicity density u - o and the rate of helicity change o * (V x o) at the initial instant 
are shown. Although the helicity on each vortex surface is zero, the helicity density 
is distributed with a relatively large organized structure. One should pay attention to 
the difference between them and take care in the discussion: if helicity density is zero 
everywhere, the helicity on the vortex surface is zero too, of course, but the reverse is 
not always the case. 
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FIGURE 7. Distribution of (a) u . w and (b)  w . (V x W )  at the initial instant for Case I. Solid lines 
and dashed lines respectively show positive and negative values for every 10% of each maximum 
value. 

4.3. Fourier spectrum of helicity 
Let us define the helicity spectrum in the same manner as the definition of Fourier 
spectrum in a usual two-dimensional flow as 

where Jn(kr)  is the nth-order Bessel function of the first kind and use has been made 
of the expression (2.5) and the relation 

(4.2) e-ikrcos(d-+k) = C(-i)”J,(kr) e-in(+-dkI- 
n 

Helicity is not a positive definite quantity, which is qualitatively different from 
energy and enstrophy. In figure 8, the time evolution of the helicity spectrum is 
shown, where an open circle represents a positive value and a black triangle a negative 
one. As the spiral structure of vorticity evolves, the Fourier components in higher- 
wavenumbers ranges are excited. It is interesting to note that the helicity spectra 
with either positive or negative sign are not randomly distributed but localized over 
finite-wavenumber intervals, and do not evolve in the same manner. The spectrum 
for positive helicity is transferred to larger length scales, while that for negative one is 
transferred to smaller length scales and dissipated by viscous effects (figure 8(u-c)). As 
a result, the positive ones assemble in small-wavenumber regions, and then positive 
total helicity emerges, or survives (figure 8d-J; see also figure 9). This process is a 
contrast to the one-way transfer of enstrophy. 

Now, we briefly explain why and where the helicity takes the positive or negative 
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FIGURE 8. Time evolution of the helicity spectrum for Case I (run-5d). The vertical axis shows the 
absolute value of the amplitude; open circles represent positive and black triangles negative values. 
(a) t = 0, ( b )  t = 5 ,  ( c )  t = 10, ( d )  t = 15, ( e )  t = 35,  (f)  t = 50. 
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sign in the previous results. Let us consider the helicity between two vortex surfaces, 
say the level lines with x = x1 and x = x 2 :  

HI,, :x2~ = 1 u - w rdrd$ 
[x1:x21 

Using the initial condition (3.6), we can rewrite it as 

where ri (i = 1,2) is defined as X(ri(4),$) = xi. At the initial instant, the first and 
second terms in (4.4) balance to give zero helicity for all 0 d x = xi < 1. And 
the second term is now positive definite because 0 < E = 1. The helicity between 
the vortex surfaces becomes negative (positive) in the region where ay/ar becomes 
larger (smaller). So that, roughly speaking, the helicity has a tendency to be negative 
(positive) in (outside) the region where the field has smaller (larger) length scale in the 
r-direction, such as the spiral structure (axisymmetric structure near origin) as shown 
in $4.2. This also explains why in Fourier space the positive helicity is transferred to 
the higher-wavenumber range and dissipated, while the negative helicity is transferred 
to the lower-wavenumber range and survives as shown in figure 8. 

4.4. Reynolds number dependence 
We have simulated the field for six values of viscosity. Their parameters are listed in 
table 1. In figure 9, we show the time variations of energy, enstrophy, helicity and rate 
of helicity change for these six simulations. One knows that the generated helicity, the 
change of the vortex structure, is a meaningful amount, since the circulation for the 
present initial condition is 1 : r4 = wbdr = 1 for unit height in z ,  and therefore, the 
helicity corresponding to once-linked vortex filaments with this circulation is 2r$ = 2 
(see Moffatt 1969). The evolution of total helicity is qualitatively similar to the result 
by Aref & Zawadzki (1991), who simulated two unlinked elliptical rings of vorticity 
initially in parallel planes. Helicity changes its sign from negative to positive. They did 
not consider this change of sign and the later stage in their paper. And the positive 
magnitude is larger than the negative magnitude, which is a contrast with their result. 
The negative stage is due to the vorticity reconnection of non-axisymmetry in an 
elliptical structure, i.e. the 2n (n  = 1,2, ...) Fourier modes in the $-direction. The 
continuous distribution of elliptical vorticity may play a central role in later stage. 
More of both positive and negative helicity is generated for smaller viscosity. 

The enstrophy takes a peak value at some time, which is similar to that observed in 
general three-dimensional large-Reynolds-number flows starting from the field with 
large length scale. The viscous dependence of these peak values, however, is weaker 
than that of the three-dimensional case, and its dependence is nearly Qpeak cc v - ~ ’ ~ .  
This is caused by the effect of vortex stretching which creates small-length-scale 
structures, now layers. This structure is different from a cudgel structure, sometimes 
called a worm or a sinew, observed in three-dimensional flows. A brief explanation 
of this mechanism is presented in the Appendix. 

Comparing the time variations of energy and helicity, one sees that as the viscosity 
decreases, the energy is more conserved, whereas the variation of helicity becomes 
larger. This is because of the magnification of vorticity, vortex stretching, as discussed 



Helically symmetric $ow 141 

40 

Q(4 
20 

0 20 40 0 20 40 

0.5 

-0.5 

0 20 40 0 20 40 
t t 

FIGURE 9. Time variation and viscous dependence of (a) energy, ( b )  enstrophy, (c) helicity and ( d )  
rate of helicity change for Case I (run-1 - run-6). 

in the preceding paragraph, though the contribution of the angle between the velocity 
and vorticity makes the problem more difficult. And for smaller viscosity the contact 
zones of vortex layers are more elongated, so that the stretched vorticity reconnects 
more actively. However this variation of helicity does not necessarily mean the 
breakdown of helicity invariance in the inviscid limit. More helicity is preserved for 
smaller viscosity when it is compared at a fixed time in the period before the peak, 
and the peak time also seems to be infinitely large in the inviscid limit. 

5. Numerical results for Case I1 
In this section, we briefly summarize the numerical results obtained for Case I1 

to compare with the results obtained for Case I. The initial flow field has the same 
equi-vorticity surfaces as those in Case I, but the vortex lines and the vortex surfaces 
are different (see figures 1, 2a and 10a). Equi-vorticity surfaces are elliptic in the 
( r ,  +)-plane, but the vorticity surfaces are circular ( r  =const.) because x = 0. 

5.1. Vorticity dynamics 
The time evolution of the vortex lines is shown in figure 10 in the same manner as 
figure 2. Although the structure of the vortex lines is three-dimensional from the 
start, the elliptical high-vorticity regions are deformed into an S-shape and then into 
a spiral, which qualitatively resembles Case I. The mechanism for this deformation is 
different, since the z-component of vorticity and its circulation in the (x, y)-plane are 
not zero. It is similar to the generating mechanism of the spiral in vortex merging in 
a usual two-dimensional flow. The sign of the z-component of the vortex is positive 
everywhere for all time. 
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The vortex lines relax to an axisymmetric helical state without experiencing the 
thin structure of vortex layers. One might think that the direction of this relaxed 
state seems to be opposite to that in Case I. Considering the invariance of the system 
under the transformation (x, tp, 4) --+ (-x, -tp, -4), one knows that this relaxed state 
is similar to that in Case I. If our simulation is started with the initial condition 
obtained by changing the sign of ( 3 . Q  u -+ -u, we obtain the same dynamics except 
for the signs of x and tp, that is u and o. It should be noted that the sign of helicity 
is not changed under this transformation. 

5.2. Reynolds number dependence 
The enstrophy decays monotonically in time, in contrast with Case 1, though the 
figures are omitted. The effect of vortex stretching is too weak to show the three- 
dimensional aspect. This may be related to the fact that the vorticity field is able 
to relax to an axisymmetric helical structure without topological change of vortex 
surfaces, since the vortex surfaces are axisymmetric from the start. 

Moreover we can show that even if the fluid is inviscid (v = 0), the enstrophy does 
not increase when x = 0. First, if x = 0 at some time, x remains zero following 
from equation (2.6) in the inviscid case because the stretching term in the vorticity 
equation is now (o - V)u = (mh V)u. Recalling the alternative definition of the helical 
symmetry (2.4), the right-hand side of the above equation is zero. In other words, 
we can say that there is no vortex stretching when x = 0. It should be noted that x 
may be non-zero in a small but finite viscosity fluid, even if we start from the initial 
condition with x = 0. So the above argument is not straightforwardly applied to our 
case. But we know that the enstrophy for the viscous fluid is bounded from above 
by the value in the corresponding inviscid case when the field is smooth. We may 
conclude that the enstrophy in Case I1 decays monotonically even in much larger 
Reynolds number flows. 

The helicity increases monotonically within the simulated period. (We have done 
a fairly long time simulation until t - lo4.) It should be noted that in Case I1 the 
energy Eo is infinite because of the non-zero total circulation of oz, although the 
enstrophy and helicity are the same as those in Case I at the initial time. The sign of 
the helicity is the same as that of the helicity in the later stage in Case I. The helical 
symmetry, t' > 0, seems to prefer the axisymmetric helical structure with positive 
helicity as a relaxed state; a detailed analysis will be reported in a separate paper. 

The smaller the viscosity is, the more both the energy and the helicity are conserved. 
So one may think that in the inviscid limit both quantities are preserved and the 
dynamics converges smoothly to that of Euler flow. There seems to be no singularity 
at all and also to be neither energy transfer nor helicity transfer in the high Reynolds 
number flow. Furthermore, the enstrophy is also more conserved for smaller viscosity, 
which reminds us of the conservation law in two-dimensional flow. The viscosity 
dependences of the enstrophy and the helicity at the same time are almost v1/2 and v 
respectively, although the fluctuations are relatively large. These facts tell us that the 
viscous length scale is almost proportional to v1/2 on the average. 

5.3. Helicity in Fourier space 
We examine the generation process of helicity in Fourier space. It is quite different 
from that in Case I, as seen by comparing figures 11 and 8. Since both helicity and 
helicity density are zero at the initial instant in Case 11, the Fourier components of 
all modes are also zero. The amplitudes of all modes grow in the same way with 
little change of their distribution. That is to say, the helicity is not transferred to 
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FIGURE 11. Time evolution of the helicity spectrum for Case 11. ( N r ,  N 4 )  = (256,128), v = 0.0002. 
(a) t = 0, (b)  t = 10, ( c )  t = 20, ( d )  t = 50. See also the caption of figure 8 . 

smaller or larger length scales, but the total helicity grows as a result of growth of 
Fourier amplitudes. This also shows that most vorticity distributions change only 
within r =const., axisymmetrically, since the spectrum is an r-directional spectrum 
integrated in the 4-direction. This evolution in Fourier space is consistent with the 
above result that vortex surfaces are not changed drastically but remained circular, 
and the vortex stretching is too weak to cause a thin vortex layer. 

6. Summary and concluding remarks 
We have simulated flow with helical symmetry and investigated mainly the gen- 

eration of helicity and the vorticity dynamics. Both our initial conditions, Cases I 
and 11, have zero helicity and a twisted elliptical tube structure of the high-vorticity 
region. According to the vortex stretching, roughly speaking, the characteristics of 
three-dimensional flows are observed in Case I, and those of two-dimensional flows 
in Case 11. In the equi-vorticity presentation, the vortex structure in the (x,y)-plane 
evolves from elliptic to S-shaped, then to a spiral, and an axisymmetric helical struc- 
ture in that order in both cases. But the structure and evolution of vortex surfaces 
and vortex lines are quite different from each other. During the evolution, helicity is 
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generated and energy is dissipated by viscous effects. In Case I, the generated total 
helicity changes its sign from negative to positive corresponding to the change of the 
vortex structure from S-shaped to an axisymmetric structure. On the other hand, the 
helicity gradually increases from zero monotonically in Case 11. 

Both total energy and total helicity are inviscid invariants, which restricts the 
dynamics and plays an important role in the turbulence theory. Not only the total he- 
licity but also the helicity surrounded by arbitrary vortex surfaces are conserved in an 
inviscid fluid. Helicity dynamics in Fourier space for homogeneous three-dimensional 
turbulent flow was investigated by Waleffe (1992). He used 'helical decomposition' 
and made a detailed analysis of the triad interaction of each decomposed Fourier 
component. Some researchers after him have applied the helical decomposition to 
investigate the vorticity dynamics in real space. But each decomposed helicity part is 
not an inviscid invariant, though the total is. 

To see the dynamics of helicity, we drew contour graphs of x ( r , @ ) ,  which gives 
the vortex surfaces, and the time evolution of the density distribution of helicity over 
each vortex surface. Most helicity is generated in the spiral structure where the slope 
of x is steep, that is the vortex surfaces accumulate densely. The generated helicity is 
located in an axisymmetric helical structure near the origin, which grows to occupy a 
larger circle with being little dissipated. 

We also examined the time evolution of the Fourier spectrum of helicity, and found 
that there are at least two types of helicity generation processes. The helicity is 
transferred to smaller or larger length scales according to its sign, and the helicity 
transferred to smaller length scales is dissipated by viscous effects. Then the helicity 
with the other sign survives, which is the generation of (total) helicity as observed 
in Case I. The other type is helicity generation without changing the distribution so 
much in the Fourier space. The amplitude of each modes becomes larger, and so the 
total helicity also becomes larger as a result, as observed in Case 11. This difference 
arising from initial condition is due to the thinning of structure by vortex stretching. 

Vortex stretching is another distinctive feature in three-dimensional flows. We know 
this from the fact that the time evolution of enstrophy has a maximum. The viscous 
dependence of the peak value in Case I is nearly v-'l2, which is a weaker dependence 
than that in three-dimensional flow.? On the other hand, there is no maximum in 
Case 11. 

In Case I, we found unexpected phenomena in the viscous dependence of helicity. 
As the viscosity becomes smaller, more energy is preserved. However, the helicity 
changes more violently and more is generated. This unexpected phenomenon is 
understood by the fact that the stretched vorticity reconnects more actively in a more 
elongated contact zone between vortex layers. It should be noted that this does not 
mean the breakdown of invariance of helicity in the inviscid limit, since the time scale 
also becomes larger. 

The spiral is a key structure in investigating a (fractional) power-law spectrum of 
turbulent flow (Lundgren 1982; Moffatt 1984; Gilbert 1988) as well as the merging 
of two like-signed vortex patches. Even if the circulation in the z-direction is zero, 
we observed a spiral structure of vorticity in Case I. The Jacobian type of nonlinear 
term and the virtual azimuthal velocity, or the contribution from uz, may help our 
understanding of the mechanism causing a spiral structure. On the other hand, the 

t Recently I found the v-'-dependence in the numerical simulation of an isotropic 
three-dimensional turbulent flow. The same explanation as in the Appendix may also apply 
regarding a cudgel as a fundamental structure. 
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Fourier spectrum of enstrophy shows three kinds of power law as the spiral structure 
develops. Since these are transient and sufficient interpretation has not been done 
yet, we will omit a discussion about it here. 

Because helicity is also related to the topology of vortex lines, it is sometimes 
referred to in the discussion of vorticity reconnection. Kida & Takaoka (1991, 1994) 
recently pointed out the importance of tracking of vortex surfaces (vortex lines) 
and the difficulty in quantifying vorticity reconnection. The present symmetry has 
the advantage in investigating these problems of the easiness in constructing vortex 
surfaces, though this has not been discussed at length yet. It is also still unresolved 
whether the relaxed state with axisymmetric helical structure emerging for both initial 
conditions is unique in the helically symmetric flow. 

I would like to acknowledge Professors Kakutani and Kida for reading the 
manuscript. Numerical computation has been done on FACOM-VP2600 in Ky- 
oto University Data Processing Center. This work was partially supported by a 
Grant-in-Aid for Scientific Research from the Ministry of Education, Science and 
Culture of Japan. 

Appendix. Viscosity dependence of Qpeak 

The viscosity dependence of the peak value of enstrophy, Qpe* K v-1/2, reminds us 
of the similar dependence of the peak value of the palinstrophy in the early period of 
the simulation of two-dimensional turbulence in an incompressible fluid (Kida et al. 
1988). In the both fields, typical structures are layers and both integrated quantities 
showing peaks are proportional to the time-derivative of inviscid conserved quantities 
divided by viscosity. One possible explanation of this viscous dependence is given 
by Kida, Yamada & Ohkitani (1988). In our case, the energy, the inviscid conserved 
quantity, at the peak time is slightly larger for smaller viscosity. This leads us to 
question their assumption that the area of active field is proportional to the thickness 
of vortex layer, that is, v1I2. 

We propose here another possible explanation for the viscosity dependence. The 
averaged thickness of the vortex layers is estimated to be proportional to v112 as in the 
discussion by Kida et al. (see also the last paragraph in $5.2). The wall of an initial 
twisted elliptical tube of high vorticity is stretched to become a layer, whose height 
and length are estimated to be proportional to vo and v-'12 respectively, because of 
the incompressibility of the fluid and the fixed pitch in the z-direction. Therefore 
neglecting slight viscous dissipation, we estimate that the vorticity whose direction 
is almost that of the layer is magnified by between v o  and v-1/2 according to its 
direction. The peak value of enstrophy, then, is proportional to between vo and v-', 
since the volume (area) of the active field is assumed to be preserved now. 

The eigenvalues of the rate of strain tensor S are i , - A  and 0. The eigenvector 
with zero eigenvalue is in the h-direction. The enstrophy is produced through vortex 
stretching, WSW. Now it should be noted that the vortex structure, a layer, does not 
always turn to the stretching direction. Let us consider the lump of vorticity advected 
passively by the (linear) shear flow U as an example, e.g. U = (Cy,O,O). Though 
the directions of greatest stretching and compressing of the rate of strain tensor are 
inclined 45" up and down from the direction of velocity respectively, ex & ey,  the 
vortex structure is elongated and is turned to the direction of the velocity, ex. 

The viscosity dependence of the peak value of the enstrophy depends on the 
type of dominant flow. If there is no vortex stretching in the field as in Case 11, 
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which corresponds to the vo case of the viscosity dependence of the peak value, the 
enstrophy decreases monotonically and is more preserved for smaller viscosity. If the 
straining flow dominates the field as examined by Takaoka (1990, 1991), where the 
direction of vortex structure and the stretching direction coincide, the peak value of 
enstrophy is proportional to v-l. Because the rate of strain tensor is now diagonal, 
the enstrophy production by vortex stretching is proportional to oaoix, which has a 
( v - ~ / ~ ) ~  = v-l dependence in the stretching direction. This was shown analytically 
for both the peak value of enstrophy in three-dimensional flow and the peak value 
of palinstrophy in two-dimensional flow (Takaoka 1990, 1991). And if the shear flow 
dominates the field as in Case I, the vortex structure is elongated in the maximum 
stretching direction initially and is turned towards the stream direction, the neutrally 
stretching direction. Vorticity might experience averaged stretching v-1/4 in this case, 
so that the peak value of the enstrophy is proportional to v - ~ / ~ .  Because the rate 
of strain tensor is off-diagonal in the (local) coordinate parallel to the velocity, the 
enstrophy production by vortex stretching is now proportional to coacop which is at 
most v-1/2yO = v-1/2. 
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